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Noise robust estimates of correlation dimension andK2 entropy
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Using Gaussian kernels to define the correlation sum we derive simple formulas that correct the noise bias
in estimates of the correlation dimension andK2 entropy of chaotic time series. The corrections are only based
on the difference of correlation dimensions for adjacent embedding dimensions and hence preserve the full
functional dependencies on both the scale parameter and embedding dimension. It is shown theoretically that
the estimates, which are derived for additive white Gaussian noise, are also robust for moderately colored
noise. Simulations underline the usefulness of the proposed correction schemes. It is demonstrated that the
method gives satisfactory results also for non-Gaussian and dynamical noise.
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I. INTRODUCTION

Analysis of nonlinear dynamics plays an important role
science. Especially low-dimensional chaos has been foun
various natural and technical systems, e.g., epileptic s
trains@1#, EEG signals during sleep@2#, or the cardiovascula
system@3#.

One of the important invariant measures to characteriz
time series generated by nonlinear dynamics is the corr
tion dimensionD @4–6#. Following in the lines of Grass
berger and Procaccia@4# the fractal dimension of the attrac
tor can be estimated from a time series (xi) by using the
power law behavior of the correlation sum

C~e,m!ª(
i , j

Q~e2uxi2xj u!;eD, ~1!

where the vectors

xi5~xi ,xi 1t , . . . ,xi 1t(m21)!
T ~2!

are constructed from mapping the time series (xi) into an
m-dimensional embedding space~for choosing the value oft
see, e.g.,@7#! and the Heaviside functionQ is used to count
the number of points inside1 a hypersphere of radiuse.

For Eq. ~1! to hold, several requirements have to be f
filled: ~a! e must be sufficiently small to avoid finite siz
effects,~b! e must be sufficiently large to ensure sufficie
statistics and to avoid discretization errors,~c! the embed-
ding dimensionm must be chosen large enough to unfold t
attractor, and~d! the influence of noise—being itself infinit
dimensional—must be negligible. Assuming that all the
conditions hold, the correlation dimension can be estima
by

*Email address: nolte@cs.unm.edu
†Email address: ziehe@first.gmd.de
‡Email address: klaus@first.gmd.de
1Distances are measured by the Euclidian normu•u, which is ap-

propriate for the purpose of this paper.
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D'd~e,m!ª
d ln C

d ln e
, ~3!

which should be independent ofe ~‘‘scaling’’ ! and indepen-
dent ofm ~‘‘saturation’’! in somee range and for sufficiently
largem.

In practice, the estimate of the correlation dimension w
be biased if the number of available data points is insu
cient@8,9#. Even more severe, the signals obtained from re
world systems are unavoidably contaminated with noi
This makes a reasonably accurate estimate of the correla
dimension extremely difficult if not impossible to achiev
Depending on the specific dynamics, already a noise leve
1–2 % can ruin scaling and saturation, which are neces
conditions to reliably assign a dimension to a time series@7#.

So far, several methods have been developed to red
the error in estimates of dimensions caused by additive n
~see@10,11# for overviews!. One general idea is to accoun
for the theoretically expected deviation from the simple sc
ing behavior of Eq.~1!. This was done for the Grassberge
Procaccia type of correlation sum@12–16# and for the corre-
lation sum with Gaussian kernels@17,18#, which we will
discuss in detail in the next section. Typically, the correc
estimate is found by a functional fit. Similar methods we
applied to estimate the noise level@19,20#. A different ap-
proach is taken in@12# proposing a non-linear scale transfo
mation to compensate for the noise bias. This method, h
ever, is an approximation that becomes inaccurate for sc
smaller than the noise level.

For practical applications, functional fitting of refine
scaling laws to empirical correlation sums has two sev
drawbacks.

~1! It is unclear in what range ofe this fit should be
performed since the given functional form is only valid f
‘‘sufficiently’’ small e and the estimated correlation dime
sion is statistically relevant only for ‘‘sufficiently’’ largee.
Since, especially, the former cannot be assessed without
knowledge of the underlying system, the estimation ofD is
likely to be based on wrong assumptions.

~2! In order to conclude that a time series originates fro
a ~low-dimensional! deterministic dynamical system of a ce
©2001 The American Physical Society12-1
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tain dimension, one has to verify thatd(e,m) does not de-
pend one within a suitable range. Though the explicit eval
ation of ‘‘scaling regimes’’ is to some extent subjective, w
regard figures of an estimated dimension as a function oe,
not just as an intermediate step but as an important fi
result. However, when estimatingD by a functional fit, the
dependence one is lost by definition, and hence it is n
longer possible to check the scaling behavior.

In order to avoid those functional fits in finite scalin
ranges, we will use Gaussian kernels in the definition of
correlation sum as proposed in@17#. This will allow us to
derive an explicit formula for the correlation dimension as
function of m ande. We will show that for every scale, th
necessary information needed to correct for the noise bia
completely contained in the difference of two uncorrec
dimension estimates for adjacent embedding dimensions

Though, to our opinion, the estimate of correlation dime
sion from fitting in scale space has significant drawbacks,
actual result may still be accurate. Since fitting, as propo
in @17#, merely exploitse dependence and we will her
merely exploitm dependence, the results are based on m
ally independent information. In practice, comparing bo
results may give additional insight into the dynamical syst
under study eventually leading to a stronger confirmation
the estimated dimension.

Section II is devoted to theoretical aspects of our
proach. In Sec. II A we present the central idea of this pa
by showing how one can remove the bias caused by w
Gaussian noise in an extremely simple manner. Genera
tions with respect to other invariants and nonwhite noise w
be done in Sec. II B, II C, and II D. General remarks on t
use of Gaussian kernels are given in Sec. II E. In Sec. III
demonstrate the usefulness of our method for various si
lation examples and we finally give a conclusion in Sec.

II. THEORY

A. Corrected dimensions for white Gaussian noise

In order to remove the bias caused by white Gauss
noise in the estimate of the correlation dimension we w
with Gaussian kernels@17# and define

Cg~e,m!5 (
i , j 2tmin

expS 2
uxi2xj u2

4e2 D . ~4!

To avoid spurious effects arising from autocorrelation
have excluded pairs that are too close in time by introduc
a minimal delaytmin . This was proposed in@21# where the
recommendation is to choosetmin to be larger than the auto
correlation time.

In contrast to the formulation with the Heaviside st
function ~hard kernel! in Eq. ~1!, using a Gaussian functio
~soft kernel! has the effect that contributions from pairs wi
uxi2xj u.e do not vanish but are exponentially suppress
The power law scaling behavior, however, coincides in b
cases as can be checked explicitly by applying the trans
mation law of Sec. II E 2.

In the noisy case the measured values are given by
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yi5xi1h i , ~5!

where we assume thath i is white Gaussian noise with stan
dard deviations.

Let us now calculate the expectation of the correlat
sum in the presence of noise. Denoting an index pair (i , j ) by
a and xa5xi2xj ~analogously fory and h), Eq. ~4! reads
for the noisy case

Cg~e,m!5(
a

expS 2
uxa1hau2

4e2 D , ~6!

whereha is now a difference between two vectors of ind
pendent Gaussian random numbers with standard devia
s, and hence corresponds to independent Gaussian n
with standard deviationA2s, with probability density

p~h!5)
k51

m
1

2sAp
expS 2

hk
2

4s2D . ~7!

Accordingly, the expectation of the correlation sum with r
spect to the noiseh reads

^Cg~e,m!&5E DhCg~e,m!p~h!

5(
a

)
k51

m
1

2sAp
E dhk

3expF2
~xak1hk!

2

4e2
2

hk
2

4s2G , ~8!

where xak denotes thekth component ofxa and Dh
5)kdhk . Note, that we have omitted the irrelevant indexa
on h.

In order to perform the integration with respect toh the
exponent of Eq.~8! is rewritten as

2
~xak1hk!

2

4e2
2

hk
2

4s2
52

s21e2

4s2e2 S hk1
s2

s21e2
xakD 2

2
xak

2

4~s21e2!
. ~9!

With

1

sE dhk expF2
s21e2

4s2e2 S hk1
s2

s21e2
xakD 2G;

e

As21e2

~10!

we find

^Cg~e,m!&;S e

As21e2D m

(
a

expF2
uxau2

4~s21e2!
G

~11!
2-2
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;S e

As21e2D m

~s21e2!D/2. ~12!

This result was already found in@17# within a slightly
different approach. It is proposed there to estimateD from a
functional fit of Eq.~12! to the measured correlation sum.

Inserting Eq.~12! into Eq. ~3! and usingCg as the corre-
lation sum leads to the estimate„see also Eq.~8! in @19#…

d~e,m!'D1~m2D !
s2

s21e2
. ~13!

The above-mentioned drawbacks of fitting thee dependence
can now be overcome by adding asubtle but important
point: According to Eq.~13! one has

s2

s21e2
'd~e,m11!2d~e,m!5:D~e,m! ~14!

and insertion into Eq.~13! and solving forD leads to the
simple relation

D'd8~e,m!ª
d~e,m!2mD~e,m!

12D~e,m!
. ~15!

Therefore, it is no longer needed to determine the noise
rected dimensiond8 from the functional behavior over a fi
nite range ofe. Instead, it is estimated independently f
each value ofe by merely using the results of the ‘‘stan
dard’’ correlation dimension estimates for two adjacent e
bedding dimensions.

We note that the corrected dimension estimate of Eq.~15!
depends explicitly onm. For largem the correction become
large and potentially inaccurate. However, from writing

D'd8~e,m!5d~e,m!2
@m2d~e,m!#D~e,m!

12D~e,m!
, ~16!

we see that the correction is proportional tom2d(e,m).
Hence we can expect that the performance of the propo
scheme is essentially independent ofd(e,m) itself and can
be also applied to systems with large correlation dimens
as long as the embedding dimension does not exceed
correlation dimension by a large amount.

We want to emphasize that one should clearly distingu
between the ‘‘bare scale’’e and the ‘‘effective scale’’

ee f f5~s21e2!1/2 ~17!

of the exponent in Eq.~11!. While e can be set arbitrarily
small, ee f f is always larger thans. Even with perfect bias
correction, the correlation sum is blind to scales~of the
noise-free signal! below the noise level. Note, however, th
noise already severely distorts the correlation sum for b
scalese far above noise level.
01611
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B. Robust estimates of theK2 entropy

In order to correct an estimate of theK2 entropy, let us
first recall its definition~e.g., @6,22#!. In the noise-free case
and assuming proper scaling, one may write them depen-
dence of the correlation sum for largem as

Cg~e,m!5c exp~2mK2!eD, ~18!

wherec is a constant.K2 can hence be estimated as the lim
m→` of

K2~e,m!5 ln@Cg~e,m!#2 ln@Cg~e,m11!#. ~19!

The K2 entropy measures the exponential increase of
uncertainty about future values given the past up to fin
accuracy. More precisely, it is a lower bound on the sum
positive Lyapunov exponents and is hence a measure
‘‘how chaotic’’ a system is~see, e.g.,@24–26#!. Linear sys-
tems, for example, must haveK250 while the correlation
dimension can be arbitrarily large.

In the noisy case Eq.~19! has to be modified. Includingm
dependence of the noise-free correlation sum, the noisy
relation sum Eq.~12! can be written as

^Cg~e,m!&'c exp~2mK2!S e

As21e2D m

~s21e2!D/2.

~20!

It follows that

ln„^Cg~e,m!&…2 ln@^Cg~e,m11!&#'K21
1

2
lnS s21e2

e2 D .

~21!

Noting that with Eq.~14!

12D~e,m!'
e2

s21e2
, ~22!

we can calculate a bias-free estimator of theK2 entropy from
the limit m→` of

K28~e,m!ª ln@Cg~e,m!#2 ln@Cg~e,m11!#

1
1

2
ln@12D~e,m!#. ~23!

It is well known that the estimation of theK2 entropy
requires in general a much larger embedding dimension
show a proper saturation than would be needed for the
spective correlation dimension. However, in contrast to
correlation dimension, the correction here does notexplicitly
increase withm. Though this does not imply that implici
dependencies are present, we may expect that the ent
estimates are more robust than the dimension estimate
m@D.
2-3
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C. Estimating the noise level

Similarly to the correction of the correlation dimensio
andK2 entropy, the use of Gaussian kernels allows to obt
estimates of the noise level itself. Solving Eq.~14! for the
noise levels leads to

s's~e,m!5S e2D

12D D 1/2

. ~24!

This estimate is now a function ofe andm allowing to check
for scaling and saturation. Again, the estimate is based
dependencies of the correlation dimension onm alone. The
dependence one can now serve as an independent cons
tency check, and comparisons with functional fits as don
@17–19# may mutually confirm the results obtained.

D. Colored noise

In the case of colored noise one finds approximately~see
Appendix!

d~e,m!'D1~m2D !D8 ~25!

with

D85
1

m (
k51

m sk
2

sk
21e2

, ~26!

wheresk
2 is thekth eigenvalue of the ‘‘noise-autocorrelatio

matrix’’

Ri jª^h ih j& ~27!

and wherei , j 51, . . . ,m denote the time points. For whit
noiseRi j 5s2d i j , the eigenvalues are all equal tos2 and one
arrives back at Eq.~13!.

As explained in detail in the Appendix, colored noi
leads to ellipsoidal Gaussian kernels. The approximation
Eqs. ~25! and ~26! consists of assuming that the correlati
sum only depends on the volume of the ellipsoid and not
its shape, which also depends on the scalee. This depen-
dence becomes smaller for largere and hence Eqs.~25! and
~26! are not only absolutely~because of the smaller bias! but
also structurally more accurate for largere.

The correction formula Eq.~15! can be applied as long a
D'D8, which is valid ifD8 is sufficiently independent ofm.
This is obvious for the ‘‘useless’’ case in the limit ofe→0,
since thenD851 and the dependence onD drops out.

Less trivial, this is also the case fore@sk , since then

D8'

(
k

sk
2

me2
5

tr~R!

me2
~28!

and tr(R) is proportional tom if the diagonal elements are a
equal as for the case of stationary noise. In general, thm
dependence is a complicated function of the noise spectr
Roughly speaking,D8 corresponds to averages in the fr
quency domain: the larger them, the better the resolution. I
01611
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the resolution is sufficiently large to consider the pow
spectrum as locally constant, them dependence will disap
pear.

In conclusion, in the case of colored noise the correc
dimension estimate of Eq.~15! becomes more accurate fo
larger e not only because the noise bias is smaller but a
because of two structural reasons:~a! the approximation in
Eqs. ~25! and ~26! is not only absolutely but also relativel
more accurate and~b! the dependence ofD8 on m decreases.

In place ofD(e,m) from Eq. ~14! one can also use, e.g

D̃~e,m!ª@d~e,m11!2d~e,m21!#/2, ~29!

which is statistically more robust, but a drawback is tha
sufficient embedding is already required form21 instead of
m. At first sight it seems that for colored noise this definitio
would be preferable to Eq.~14! because of its apparen
symmetry.2 However, after defining dimensions at hal
integer embedding spacesm̂5m11/2 by the mean

d~e,m̂![@d~e,m11!1d~e,m!#/2, ~30!

and correcting according to

d8~e,m̂!5
d~e,m̂!2m̂D~e,m!

12D~e,m!
, ~31!

it is readily seen that this definition is identical to Eq.~15!,
which can hence be regarded as a symmetric correc
around half-integer embedding dimensions.

We finally note that for strictly Gaussian noise, the re
tion

d^ ln Cg~e,m!&
d ln e

5mD8~e,m! ~32!

holds exactly. This may be used to reveal spurious nonz
dimension estimates caused by correlations of the noise

E. On the use of Gaussian kernels

1. Calculating the derivative

One might guess that a significant drawback of the use
Gaussian kernels is the apparent smearing of scales
present when using Heaviside kernels. However, the corr
tion sum calculated from step functions is not continuous
differentiate it, one must use a finite difference over a co
siderable range ofe @7,27#, which in fact also smears th
scales. Since the correlation sum defined by Gaussian ke
is differentiable, the latter form of smearing can be avoid
and we can directly calculated(e,m) as the derivative of the
correlation sum

2Similar to the central difference for numerically approximating
derivative.
2-4
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d~e,m!5
d ln Cg~e,m!

d ln~e!
5

(
a

uyau2 exp~2uyau2/4e2!

2e2(
a

exp~2uyau2/4e2!

,

~33!

where again the double indexa denotes all pairs$( i , j )u i
, j % that are included in the sum andya5yi2yj . In all of
our numerical simulations we use this formula to direc
calculate the~uncorrected! correlation dimension.

2. Transformation of Heaviside kernels to Gaussian kernels

A correlation sum based on Gaussian kernels may be
pressed by a correlation sum based on step functions

Cg~e,m!5E de8 f ~e,e8!C~e8,m! ~34!

with C(e8,m) from Eq. ~4!. In order to find the correc
weighting function f (e,e8), it is sufficient to express the
Gaussian kernel by the Heaviside kernel. From

expS 2
uyu2

4e2D 5E
0

`

de8 f ~e,e8!Q~e82uyu!, ~35!

it follows by partial integration that

f ~e,e8!5
e8

2e2
expS 2

e82

4e2D ~36!

in agreement with@18#. The weight function3 f (e,e8) can be
used to transform any quantity calculated from hard kern
into the respective ones calculated from Gaussian kern
Especially, it follows from

E
0

`

de8 f ~e,e8!e8D;eD ~38!

that the power law scaling—if it exists—will be the same f
both correlation sums.

The relation between hard and Gaussian kernels could
principle, be used to speed up the computation since
correlation sums according to Grassberger and Procaccia
much simpler to calculate. However, there is a tradeoff:
an accurate calculation a finee resolution is required tha

3It should be noted that for fixede the maximum of f (e,e8)
occurs ate85A2e implying a mismatch of scales. Replacing th
definition of the Gaussian kernel according to

expS2
y2

4e2D→expS2
y2

2e2D ~37!

ends up with a proper match of scales in the sense thatCg(e,m)
gets the largest contribution fromC(e8,m) at the same scale. O
course, the specific choice is merely a convention, and in fact,
present definition is slightly more convenient for the analytical c
culations.
01611
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partly spoils the beneficial effect if the correlation sums a
calculated directly by implementing Eq.~1!.

An extremely efficient method to avoid this problem w
presented in@18# where the authors proposed to first calc
late the histogram ofuyi2yj u from which the correlation sum
with respect to any kernel can readily be calculated in n
ligible computer time. We would like to suggest a slig
modification of this method by calculating the histogram
the logarithm of the squared distances in order to ensu
sufficient resolution also for small scales. Explicitly th
means that one rewrites the relevant sums as

(
a

f ~ uyau2!exp~2uyau2/4e2!

5E dz f~exp@z# !exp@2exp~z!/4e2#

3H(
a

d~z2 lnuyau2!J ~39!

with f (uyau2)51 for the denominator andf (uyau2)5uyau2 for
the numerator of Eq.~33!. The term in curly brackets can
now be approximated by the respective histogram and
integral is finally approximated by the respective sum. Ta
ing, e.g., 100 values for a unit step ofz results in essentially
exact correlation sums.

III. SIMULATION RESULTS

A. Dimension estimates in the presence
of white Gaussian noise

Numerical results will be given mainly for the He´non
map, which is defined by

xi 11512axi
21bxi 21 , ~40!

with a51.4 andb50.3 @4#. The time lagt for embedding
according to Eq.~2! is set to 1. For convenience, all tim
series considered in this paper were normalized accordin

xi→
xi

sx
, ~41!

wheresx denotes the standard deviation of the time ser
(xi). For additive noise, the normalization was done w
respect to the noise-free data and for dynamical noise, w
respect to the noisy data.

In order to evaluate our method we added white Gauss
noise with standard deviations50.1 to the time series cor
responding to a noise level of 10%.

From the noisy data we compute uncorrected dimens
estimates with Eq.~33! for embedding dimensionsm
52, . . . ,8 andsubsequently correct these estimates accord
to Eq. ~15!. Apart from Fig. 3~where we compare N5500
and N520 000!, in all simulationsN55000 time points are
used for the estimation of the invariants.

In Fig. 1 we plot the results of uncorrected and correc
estimates of the correlation dimension. Indeed, a proper s
ing and saturation behavior is completely ruined by t

e
-
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Gaussian noise. In contrast, our corrected estimates s
scaling and saturation at the correct dimension.

The correction breaks down if the scalee becomes too
small: the noisy correlation dimensions converge to the e
bedding dimensions and do not depend on the dimensio
the noise-free signal, and hence, solving for the latter
comes ill defined. Note however, that for low embeddi
dimensions,e may be considerably smaller than the no
level while still allowing for a reasonable dimension es
mate.

The estimation becomes more and more difficult
higher embedding dimensions since then, the necessary
tive correction increases strongly. We note again that
magnitude of the correction depends rather on the differe
of embedding dimension and correlation dimension of
noise-free signal than on the embedding dimension its
Thus, if the number of data points is correspondingly larg
one can expect to obtain similar results equally well also
higher-dimensional dynamics.

For other tests of the dimension estimation method we
the time series obtained from the Ro¨ssler and Lorenz system
@25# of differential equations that were then superimposed
white Gaussian noise with standard deviations50.1. For
continuous systems the delay timet can take arbitrary val-
ues. Here, we sett51 andt50.25 for the Ro¨ssler and Lo-
renz systems, respectively.

The results are shown in Fig. 2. Again we find very s
isfactory bias removal. While none of the uncorrected

FIG. 1. Uncorrected and corrected estimates of the correla
dimension for embedding dimensionsm52, . . . ,8 for the He´non
map in the presence of 10% white Gaussian noise. The true dim
sion D51.21 is indicated by a dashed line. For simulations w
additive noise, the noise-free data, and with dynamical noise,
noisy data were always scaled to standard deviation 1. Hence
quantity shown in this and in the following plots is dimensionle
01611
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mension estimates shows scaling, the Lorenz system at
approximately saturates at the correct value, ate'0.5. Re-
markably, for the noisy Ro¨ssler system the correct dimensio
cannot even be anticipated before bias removal, but is nic
recovered by our correction scheme.

For very large noise or for very few data the correcti
still leads to qualitatively correct results. This can be seen
Fig. 3 where we show the dimension estimates for the He´non
map with 50% noise, now using N520 000 data points and
with 10% noise using N5500 data points. However, becau
of the relatively large fluctuations and the small scaling

n

n-

e
ny
.

FIG. 2. Uncorrected and corrected estimates of the correla
dimension for embedding dimensionsm52, . . . ,8 for the Ro¨ssler
and Lorenz system in the presence of 10% Gaussian noise.
‘‘true’’ dimensionsD52.05 @4# for the Lorenz andD51.9 for the
Rössler system~estimated from@13#! are indicated by dashed lines

FIG. 3. Estimates of the correlation dimension for the He´non
map with 50% noise level using N520 000 data points~upper pan-
els! and with 10% noise using N5500 data points~lower panels!.
2-6
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gime we regard these examples as being at the limit o
reasonable application of our method.

B. Noise level

In Sec. II C we derived an estimators(m,e) for the stan-
dard deviation of the noise. Like the dimension andK2 esti-
mators, this construction has the advantage that in contra
fitting procedures the consistency can be checked bot
terms of scaling and saturation properties.

In the upper left panel of Fig. 4 we show the noise es
mator for the He´non map with 10% white Gaussian noise.
scaling region is well established at scales in the order of
noise level where the dependence ofD on the noise level is
maximal. Taking, e.g., the estimates in the middle of
scaling range ate50.1051 results in a mean ofs50.0990
with a standard deviation of 0.003 in excellent agreem
with the true value.

The estimate of the noise level becomes less stable
smaller noise since estimates at smaller scales are base
fewer data. This can be seen in the upper right panel of
4 showing the result for 2% noise.

For comparison, we also plot the results for uniform a
colored noise in the lower panels of Fig. 4. In both cases
find systematic but small deviations from the true no
level. Uniform noise typically results in nice scaling beha
ior with a small overestimation of the noise level, while
the case of colored noise we observe a systematic unde
mation, which—analogous to the dimension estimates—
more pronounced for smalle.

C. K2 entropy

The results for theK2 entropy estimates are shown in Fi
5. In contrast to the uncorrected estimates~left upper panel!
the corrected ones scale properly~right upper panel!. The
lower boundary of the scaling range grows for increas
embedding dimensions, which is in fact a well-known pro
erty also for noise-free data@22#. A saturation behavior at the

FIG. 4. Estimates of the respective noise levels~dashed line! for
embedding dimensionsm52, . . . ,8 for the He´non map data.
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correct value is verifiable only for large embedding dime
sions (m>10) as it also would have been expected from
noise-free data@22#.

The saturation is seen more clearly in the lower panels
Fig. 5 where we show theK2 estimates as a function of th
embedding dimension for three fixed scales within the sc
ing regime. In the literature different values are given forK2
of the Hénon map. Although it is not the primary goal of th
paper to settle this issue, our findings rather supportK2
'0.325 as stated in@24# thanK2'0.29 from@23#.

D. Other types of noise

For the derivation of the correction formulas we assum
additive white Gaussian noise. In real-world data this
sumption will not hold exactly.

In order to test the validity of our method also for noi
with other probability distributions, we added uniform whi
noise, again with standard deviations50.1, to the data gen
erated by the He´non map and applied the same correction
in the previous section. The upper panels of Fig. 6 show
uncorrected and corrected dimension estimates. Though
estimates are slightly worse, if compared with the Gauss
noise case~cf. Fig. 1!, both saturation and scaling are clear
visible after correction.

We now address the case of nonwhite noise that, in p
ciple, could be overcome by choosing a large value oft @see
Eq. ~2!# or by filtering the data appropriately before perform
ing the actual analysis in order to ‘‘whiten’’ the noise. How
ever, a too larget also complicates the dimension estimati
since due to the intrinsic chaotic nature of the dynami
functional dependencies between consecutive data point
diminished, and the correct filter to whiten the noise witho
causing severe phase distortions of the system itself is
ally unknown. Still, in order to get satisfactory results with

FIG. 5. Estimates of the correlation entropyK2'0.325~dashed
line! for embedding dimensionsm53, . . . ,19 for the He´non map in
the presence of 10% Gaussian noise. Upper panels:K2 as a function
of e. Lower panels:K2 as a function of embedding dimension fo
e50.15,0.18,0.21 chosen from the scaling region.
2-7
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the proposed approach it would be advisable to avoid
treme deviations from the white-noise case since the la
may ‘‘mimic low-dimensional chaotic attractors’’@28#.

In order to check the robustness of our method aga
non-iid noise, we added low pass filtered Gaussian nois
the time series. The low pass filter was implemented by
plying a moving average of order two to white Gauss
noise withs50.1,

h i→~h i1h i 11!/2, ~42!

s→s/A2'0.071. ~43!

The power spectrum of this colored noise then readsP(v)
5@11cos(v)#/2, wherevP@0,p# is the frequency andp is
the Nyquist frequency.

The results are shown in the lower panels of Fig.
Again, we find a major improvement after applying the co
rection. However, ife is smaller than the noise level w
observe a systematic overestimate of the dimension in ag
ment with the theoretical considerations stating that the
proximations are more accurate for largere.

We finally present two examples using dynamical no
that arises when the dynamical system itself and not me
the measurement is disturbed by noise. This was realize
a small distortion of one variable of the Ro¨ssler and Lorenz
system in each step of the integration of the differen
equations.4 Though the estimates~see Fig. 7! are less stable
than for additive white Gaussian noise, we approximat
recover scaling and saturation at the correct values. T

4The Hénon map is unstable with respect to this perturbation.

FIG. 6. Uncorrected~left panels! and corrected~right panels!
estimates of the correlation dimension for embedding dimens
m52, . . . ,8 for the He´non map in the presence of uniformly distrib
uted white noise,s50.1 ~upper panels! and Gaussian distribute
colored noise,s50.071 ~lower panels!. The true dimensionD
51.21 is always indicated by a dashed line.
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cally, the correction leads to small but systematic undere
mates of the dimensions. Estimates of the noise level in
cate that this dynamical noise roughly corresponds to 1
additive noise. However, the lack of a clear scaling regi
can readily serve as an indicator that the assumption of
ditive white noise is inconsistent.

IV. CONCLUSION

We introduced a Gaussian kernel based method for red
ing the noise bias in estimates of correlation dimension
K2 entropy of dynamical system attractors.

In contrast to most proposed methods and to all exist
exact methods, our approach islocal in scale space and re
quires for each scale, only the knowledge of the functionD:
the difference of the uncorrected dimension estimates fortwo
adjacent embedding dimensions. Hence, both scaling a
saturation can still be checked after bias removal. For pr
tical purposes this latter property is highly desirable since
most applications it is not clear, whether the time series
der consideration is governed by deterministic chaotic
namics or by an unstructured stochastic noise process.

We demonstrated the performance for various examp
using data from the He´non map and the Lorenz and Ro¨ssler
system. In all cases the noise level was chosen to des
scaling and saturation at the true correlation dimension
the uncorrected dimension estimate while these prope
could be sufficiently recovered after bias removal. We co

s

FIG. 7. Estimates of correlation dimension for the Ro¨ssler sys-
tem ~left panels! and for the Lorenz system~right panels! perturbed
by dynamical noise. Thes estimates indicate a noise level of abo
10%. Note, however, that no clear scaling regime can be obse
for the noise level estimates.
2-8
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show experimentally that the proposed approach is not
sitive to the distribution of the noise~Gaussian versus uni
form!. Experiments with dynamical noise led to qualitative
correct results with a small but systematic underestimate
the dimension.

Special emphasis was given to the problem of correla
noise. Also for this case we could derive an approxim
refined scaling law that turns out to depend on the eigen
ues of the nontrivial noise covariance matrix in
m-dimensional embedding space. We could provide theo
ical and experimental evidence that our method, which d
not require knowledge of the noise characteristics itself
practicable as long as the deviation from the white-noise c
is not too large.

Estimation of the noise level and bias correction ofK2
entropy was achieved similarly. Again,D turned out to be
the crucial quantity sufficient to define a ‘‘noise function
which should scale and saturate at the correct noise le
and to construct a bias-free estimator ofK2. We could dem-
onstrate a promising performance in case of the He´non map
even though the estimate ofK2 in the presence of noise i
generally considered to be an exceptionally difficult ta
@18#.

Future research will be devoted to applications of our
timation method to real-world data.
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APPENDIX

In case of colored noise, the probability distribution f
ha reads~henceforth omitting the indexa on h)

p~h!;
1

Adet~R!
expS 2

hR21h

4 D ~A1!

with R given by Eq.~27!. In order to evaluate the expectatio
of the correlation sum

^Cg~e,m!&;(
a

1

Adet~R!
E Dh

3expS 2
uxa1hu2

4e2
2

hR21h

4 D ~A2!

with Dhª)k51
m dhk , we reexpress the exponent as

2
uxa1hu2

4e2
2

hR21h

4
52

xa~12A21A2T!xa

4e2

2
uj1A2Txau2

4e2
~A3!
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with the definitions

ATAª11e2R21 ~A4!

and

jªAh. ~A5!

Using Dh5Dj/det(A) we find

^Cg~e,m!&;
em

detAAdetR
(
a

expF2
xa~12A21A2T!xa

4e2 G .

~A6!

As we see, the presence of nonwhite noise has led
nonspherical, ellipsoidal Gaussian kernels with
m-dimensional volumeV given by

V;FdetS 12A21A2T

4e2 D G21/2

. ~A7!

We now assume that the correlation sum scales in the no
free case with the volume as;VD/m. This is indeed an ap-
proximation because the exact scaling law can in gen
also depend on the specific shape of the ellipsoid that va
as a function ofe. The lengthl k of the kth axis is given by
the square root of thekth eigenvalue of the matrix
in the exponent of Eq.~A6!: l k5A(sk

21e2! with sk
2 being

the kth eigenvalue ofR. For largee the ellipsoid becomes
spherical; especially, its shape becomes independent ofe.

Ignoring e dependence of the shape of the ellipsoid
arrive at

^Cg~e,m!&;
emVD/m

detAAdetR
. ~A8!

SinceA is merely a function ofR we may expresŝCg(e,m)&
by the eigenvalues (sk

2), e.g.,

det~A!5det~A11e2R21!5)
k

S sk
21e2

sk
2 D 1/2

, ~A9!

leading finally to

^Cg~e,m!&;em)
k51

m

~sk
21e2!(D2m)/2m. ~A10!

The calculation of the correlation dimension as given by E
~25! and ~26! is now straightforward.
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@1# A. Babloyantz and A. Destexhe, Proc. Natl. Acad. Sci. U.S
83, 3513~1986!.

@2# A. Babloyantz, J. M. Salazar, and C. Nicolis, Phys. Lett.111A,
152 ~1985!.

@3# V. K. Yeragani, K. Srinivasan, S. Vempati, R. Pohl, and
Balon, J. Appl. Physiol.75, 2429~1993!.

@4# P. Grassberger and I. Procaccia, Phys. Rev. Lett.50, 346
~1983!.

@5# P. Grassberger and I. Procaccia, Physica D9, 189 ~1983!.
@6# K. Pawelzik and H. G. Schuster, Phys. Rev. A35, 481~1987!.
@7# H. Kantz and T. Schreiber,Nonlinear Time Series Analysi

~Cambridge University Press, Cambridge, England, 1997!.
@8# L. A. Smith, Phys. Lett. A133, 283 ~1988!.
@9# A. Stefanovska, S. Strle, and P. Kroselj, Phys. Lett. A235, 24

~1997!.
@10# E. J. Kostelich and T. Schreiber, Phys. Rev. E48, 1752~1993!.
@11# T. Schreiber, Phys. Rev. E56, 274 ~1997!.
@12# D. Kugiumtzis, Int. J. Bifurcation Chaos Appl. Sci. Eng.6,

1283 ~1997!.
@13# H. Oltmans and P. J. T. Verheijen, Phys. Rev. E56, 1160

~1997!.
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