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Noise robust estimates of correlation dimension andk, entropy
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Using Gaussian kernels to define the correlation sum we derive simple formulas that correct the noise bias
in estimates of the correlation dimension dfgentropy of chaotic time series. The corrections are only based
on the difference of correlation dimensions for adjacent embedding dimensions and hence preserve the full
functional dependencies on both the scale parameter and embedding dimension. It is shown theoretically that
the estimates, which are derived for additive white Gaussian noise, are also robust for moderately colored
noise. Simulations underline the usefulness of the proposed correction schemes. It is demonstrated that the
method gives satisfactory results also for non-Gaussian and dynamical noise.
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|. INTRODUCTION dinc
D% m):=
d(ev ) dine’ (3)

Analysis of nonlinear dynamics plays an important role in
science. Especially low-dimensional chaos has been found hich should be independent ef(“scaling”) and indepen-
various natural and technical systems, e.g., epileptic spikélent ofm (“saturation”) in somee range and for sufficiently
trains[1], EEG signals during sled@], or the cardiovascular largem.
system[3]. In practice, the estimate of the correlation dimension will
One of the important invariant measures to characterize Be biased if the number of available data points is insuffi-
time series generated by nonlinear dynamics is the correlasient[8,9]. Even more severe, the signals obtained from real-
tion dimensionD [4-6]. Following in the lines of Grass- world systems are unavoidably contaminated with noise.
berger and Procaccfa] the fractal dimension of the attrac- This makes a reasonably accurate estimate of the correlation
tor can be estimated from a time serieg)(by using the dimension extremely difficult if not impossible to achieve.

power law behavior of the correlation sum Depending on the specific dynamics, already a noise level of

1-2% can ruin scaling and saturation, which are necessary
o v —y |y D conditions to reliably assign a dimension to a time sdffgs
C(e,m) _2 Oe=xi=x)~e, @ So far, several methods have been developed to reduce
the error in estimates of dimensions caused by additive noise
where the vectors (see[10,17] for overviews. One general idea is to account
T for the theoretically expected deviation from the simple scal-
X=X Xitry o Xigr(m-1)) (2 ing behavior of Eq(1). This was done for the Grassberger-

Procaccia type of correlation surh2-16 and for the corre-
lation sum with Gaussian kerne[47,18, which we will
discuss in detail in the next section. Typically, the corrected
estimate is found by a functional fit. Similar methods were
applied to estimate the noise leVd9,20. A different ap-
proach is taken ifi12] proposing a non-linear scale transfor-
mation to compensate for the noise bias. This method, how-
ever, is an approximation that becomes inaccurate for scales

are constructed from mapping the time serigg (nto an
m-dimensional embedding spadfer choosing the value of
see, e.g.}7]) and the Heaviside functio® is used to count
the number of points insidea hypersphere of radius

For Eqg.(1) to hold, several requirements have to be ful-
filled: (@) € must be sufficiently small to avoid finite size
effects, (b) e must be sufficiently large to ensure sufficient
statistics and to avoid discretization errofs} the embed- g aller than the noise level.
ding dimensiorm must be chosen large enough to unfold the  gqr practical applications, functional fitting of refined

attractor, andd) the influence of noise—being itself infinite scaling laws to empirical correlation sums has two severe
dimensional—must be negligible. Assuming that all theseyqwbacks.

conditions hold, the correlation dimension can be estimated (1) It is unclear in what range of this fit should be

by performed since the given functional form is only valid for
“sufficiently” small e and the estimated correlation dimen-
sion is statistically relevant only for “sufficiently” large.
Since, especially, the former cannot be assessed without any
knowledge of the underlying system, the estimatiorDois
likely to be based on wrong assumptions.

Distances are measured by the Euclidian noérmnwhich is ap- (2) In order to conclude that a time series originates from
propriate for the purpose of this paper. a (low-dimensional deterministic dynamical system of a cer-
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tain dimension, one has to verify thd{e,m) does not de- Yi=Xi+ 7, (5)
pend one within a suitable range. Though the explicit evalu-
ation of “scaling regimes” is to some extent subjective, we where we assume thaf, is white Gaussian noise with stan-
regard figures of an estimated dimension as a functioa of dard deviatioro.
not just as an intermediate step but as an important final Let us now calculate the expectation of the correlation
result. However, when estimatiriy by a functional fit, the sum in the presence of noise. Denoting an index paj) by
dependence o is lost by definition, and hence it is no « andx,=x—x; (analogously fory and 7), Eq. (4) reads
longer possible to check the scaling behavior. for the noisy case

In order to avoid those functional fits in finite scaling
ranges, we will use Gaussian kernels in the definition of the X 7,/
correlation sum as proposed [t7]. This will allow us to Cg(e,m)=2 exp ———— —
derive an explicit formula for the correlation dimension as a “« de
function of m and e. We will show that for every scale, the
necessary information needed to correct for the noise bias

, (6)

\Wwhere 7, is now a difference between two vectors of inde-
completely contained in the difference of two uncorrectedP€ndent Gaussian random numbers with standard deviation

dimension estimates for adjacent embedding dimensions. ¢+ @nd hence corresponds to independent Gaussian noise
Though, to our opinion, the estimate of correlation dimen-With standard deviation2o, with probability density
sion from fitting in scale space has significant drawbacks, the " 5
actual result may still be accurate. Since fitting, as proposed 1 Tk
in [17], merely exploitse dependence and we will here p(77)=k1;[l 20\/;@@( _E)'
merely exploitm dependence, the results are based on mutu-
ally independent information. In practice, comparing bothaccqrdingly, the expectation of the correlation sum with re-
results may give additional |n5|ght into the dynamlpal SYSte”Epect to the noisey reads
under study eventually leading to a stronger confirmation of
the estimated dimension.
Section 1l is devoted to theoretical aspects of our ap- (Cg(e,m))=f D 5CYe,m)p(7n)
proach. In Sec. Il A we present the central idea of this paper

)

by showing how one can remove the bias caused by white m 1

Gaussian noise in an extremely simple manner. Generaliza- = I1 f d 7y

tions with respect to other invariants and nonwhite noise will @ k1207

be done in Sec. Il B, Il C, and Il D. General remarks on the ) 2

use of Gaussian kernels are given in Sec. Il E. In Sec. Il we xe [{_ (Xakt 7 e ®)
demonstrate the usefulness of our method for various simu- 42 4g2|

lation examples and we finally give a conclusion in Sec. IV.
where x, denotes thekth component ofx, and Dy

Il. THEORY =IIdny. Note, that we have omitted the irrelevant index
on 7.
A. Corrected dimensions for white Gaussian noise In order to perform the integration with respect sothe

In order to remove the bias caused by white Gaussia§XPonent of Eq(8) is rewritten as
noise in the estimate of the correlation dimension we work

2
with Gaussian kernelgl7] and define  (Xakt 70 B 77_&_ - o+ e . o? § )
|X-—X-|2 42 42 4o2€? g o2+ €2 ak
Cle,m= > exp ———|. (4) )
I<]=tmin 452 Xak (9)
4(0'2+ 62) ’

To avoid spurious effects arising from autocorrelation we
have excluded pairs that are too close in time by introducing With
a minimal delayt,;,. This was proposed if21] where the
recommendation is to choosg;, to be larger than the auto- 1 o2+ €2
correlation time. ;j dyexg — ———

In contrast to the formulation with the Heaviside step 4o”e
function (hard kernel in Eq. (1), using a Gaussian function
(soft kerne) has the effect that contributions from pairs with .

: . we find

|xi—x;|> € do not vanish but are exponentially suppressed.
The power law scaling behavior, however, coincides in both
cases as can be checked explicitly by applying the transfor- (CYe,m))~
mation law of Sec. Il E 2.

In the noisy case the measured values are given by (11
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m

(024 )PP, (12

€
a’+ €

This result was already found ifL7] within a slightly
different approach. It is proposed there to estiniateom a
functional fit of Eq.(12) to the measured correlation sum.

Inserting Eq.(12) into Eq.(3) and usingC? as the corre-
lation sum leads to the estimateee also Eq(8) in [19])

2

d(e,m~D+(m-D) ——.
o+ €

13

The above-mentioned drawbacks of fitting theependence
can now be overcome by adding subtle but important
point: According to Eq(13) one has

2

~d(e,m+1)—d(e,m)=:A(e,m) (14

o+ €2

and insertion into Eq(13) and solving forD leads to the
simple relation

d(e,m)—mA (e,
D~d’(e,m):= (Elm_)AZ n:)f m)

(19

PHYSICAL REVIEW &4 016112

B. Robust estimates of thek, entropy

In order to correct an estimate of tie, entropy, let us
first recall its definition(e.g.,[6,22]). In the noise-free case
and assuming proper scaling, one may write thelepen-
dence of the correlation sum for largeas

CY e,m)=cexp—mK,)e®, (18
wherec is a constantK, can hence be estimated as the limit
m— oo of
K,(e,m)=In[CY e,m)]—IN[C% e,m+1)]. (19

The K, entropy measures the exponential increase of the
uncertainty about future values given the past up to finite
accuracy. More precisely, it is a lower bound on the sum of
positive Lyapunov exponents and is hence a measure of
“how chaotic” a system is(see, e.g.[24—26). Linear sys-
tems, for example, must hawe,=0 while the correlation
dimension can be arbitrarily large.

In the noisy case Eq19) has to be modified. Includingn
dependence of the noise-free correlation sum, the noisy cor-
relation sum Eq(12) can be written as

Therefore, it is no longer needed to determine the noise cor-

rected dimensiom’ from the functional behavior over a fi-

nite range ofe. Instead, it is estimated independently for
each value ofe by merely using the results of the “stan-
dard” correlation dimension estimates for two adjacent em- In({C9(e,m)))—In[(C9(e,m+1))]~K,+ In

bedding dimensions.
We note that the corrected dimension estimate of(ES).

depends explicitly om. For largem the correction becomes

large and potentially inaccurate. However, from writing

[m—d(e,m)]A(e,m)
a 1—A(e,m) '

D~d'(e,m)=d(e,m) (16

we see that the correction is proportional o—d(e,m).

€ ; 2 2\D/2
(Cg(e,m)>~cexp(—mK2) \/ﬁ (o°+ €)'~
(20
It follows that
2+ 62
2 €2
(21)
Noting that with Eq.(14)
&2
1—A(e,m)~ (22)

-~ 1
o+ €2

we can calculate a bias-free estimator of kheentropy from

Hence we can expect that the performance of the proposetie limit m—« of

scheme is essentially independentdg&, m) itself and can

be also applied to systems with large correlation dimension

K5(e,m):=In[CYe,m)]—In[CY(e,m+1)]

as long as the embedding dimension does not exceed the

correlation dimension by a large amount.

We want to emphasize that one should clearly distinguish

between the “bare scale¢ and the “effective scale”

= (02+ 2)112 17)
of the exponent in Eq(11). While € can be set arbitrarily
small, ¢" is always larger thamr. Even with perfect bias
correction, the correlation sum is blind to scal@d the

+%In[1—A(e,m)]. (23

It is well known that the estimation of thK, entropy
requires in general a much larger embedding dimension to
show a proper saturation than would be needed for the re-
spective correlation dimension. However, in contrast to the
correlation dimension, the correction here doesenglicitly
increase withm. Though this does not imply that implicit

noise-free signalbelow the noise level. Note, however, that dependencies are present, we may expect that the entropy
noise already severely distorts the correlation sum for barestimates are more robust than the dimension estimates for

scalese far above noise level.

m>D.
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C. Estimating the noise level the resolution is sufficiently large to consider the power
spectrum as locally constant, tine dependence will disap-
ear.

In conclusion, in the case of colored noise the corrected
dimension estimate of Eq15) becomes more accurate for
larger € not only because the noise bias is smaller but also

€A\ 12 because of two structural reasorial the approximation in
1—A) (24 Eqgs.(25) and(26) is not only absolutely but also relatively
more accurate an() the dependence &’ on mdecreases.

Similarly to the correction of the correlation dimension
andK, entropy, the use of Gaussian kernels allows to obtair?
estimates of the noise level itself. Solving EG4) for the
noise levelo leads to

O'%O'(E,m)=<

This estimate is now a function efandm allowing to check In place ofA(e,m) from Eg.(14) one can also use, e.g.,
for scaling and saturation. Again, the estimate is based on
dependencies of the correlation dimensionmomlone. The Z(e,m) :=[d(e,m+1)—d(e,m—1)]/2, (29

dependence om can now serve as an independent consis-
tency check, and comparisons with functional fits as done ifyhich is statistically more robust, but a drawback is that a

[17-19 may mutually confirm the results obtained. sufficient embedding is already required for- 1 instead of
m. At first sight it seems that for colored noise this definition
D. Colored noise would be preferable to Eq(14) because of its apparent
In the case of colored noise one finds approximatsge symmetry” However, after defining dimensions at half-
Appendiy integer embedding spaces=m+ 1/2 by the mean
d(e,m)~D+(m=-D)A 25 d(e,m=[d(e,m+1)+d(e&;m)]/2, (30)
with

and correcting according to

12 oy
A== : (26) H)—h
L= d’(e,ﬁq)=d(€'m) mA(e,m), (31)
1-A(e,m)
whereo? is thekth eigenvalue of the “noise-autocorrelation
matrix” it is readily seen that this definition is identical to Ed5),
which can hence be regarded as a symmetric correction
Rij=(7i7;) (27)  around half-integer embedding dimensions.
. , . . We finally note that for strictly Gaussian noise, the rela-
and wherei,j=1, ... m denote the time points. For white tion
noiseR;; = ¢4 , the eigenvalues are all equaldd and one
arrives back at Eq(13).
As explained in detail in the Appendix, colored noise w:m/(e,m) (32)

leads to ellipsoidal Gaussian kernels. The approximation in dine
Egs. (25 and(26) consists of assuming that the correlation

sum only depends on the volume of the ellipsoid and not orolds exactly. This may be used to reveal spurious nonzero
its shape, which also depends on the seal@his depen- dimension estimates caused by correlations of the noise.
dence becomes smaller for largeand hence Eq<25) and

(26) are not only absoluteltbecause of the smaller bjasut E. On the use of Gaussian kernels
also structurally more accurate for larger
The correction formula Eq15) can be applied as long as 1. Calculating the derivative
A~A’, which is valid if A" is sufficiently independent af. One might guess that a significant drawback of the use of
This is obvious for the “useless” case in the limit 8750,  Gaussian kernels is the apparent smearing of scales not
since therA’ =1 and the dependence @ndrops out. present when using Heaviside kernels. However, the correla-
Less trivial, this is also the case fer oy, since then tion sum calculated from step functions is not continuous: to
differentiate it, one must use a finite difference over a con-
2 UE siderable range ot [7,27], which in fact also smears the
, K tr(R) scales. Since the correlation sum defined by Gaussian kernels
A'~ me2 = me2 (28 is differentiable, the latter form of smearing can be avoided

and we can directly calculati e,m) as the derivative of the

and tr(R) is proportional tamif the diagonal elements are all Correlation sum

equal as for the case of stationary noise. In generaljthe

dependence is a complicated function of the noise spectrum.

Roughly speakingA’ corresponds to averages in the fre- 2Similar to the central difference for numerically approximating a
guency domain: the larger thm, the better the resolution. If derivative.
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partly spoils the beneficial effect if the correlation sums are

g 2 Vol exp—|y.|?4e?) calculated directly by implementing E¢f).
dIinCYe,m) “& e . .
d(e,m)= = ' An extremely efficient method to avoid this problem was
din(e) 2e2S exp(— |y, |2/4€?) presented if18] where the authors proposed to first calcu-
a “ late the histogram dffy; —y;| from which the correlation sum

(33 with respect to any kernel can readily be calculated in neg-
) ) o ligible computer time. We would like to suggest a slight
where again the double index denotes all pair{(i.j)li  modification of this method by calculating the histogram of
<]} that are included in the sum and=y;—y;. In all of  {he |ogarithm of the squared distances in order to ensure
our numerical simulations we use this formula to directly yfficient resolution also for small scales. Explicitly this
calculate thguncorrected correlation dimension. means that one rewrites the relevant sums as

2. Transformation of Heaviside kernels to Gaussian kernels

f 2yexp(—|y,|%/4€?
A correlation sum based on Gaussian kernels may be ex- ; (1Yol ) exp = |ya|*/4€%)

pressed by a correlation sum based on step functions

= f dz f(exd z])exH — exp(z)/4€?]
Cg(e,m)=J’ de'f(e,e’)C(e’,m) (39
2
with C(e’,m) from Eq. (4). In order to find the correct X[ED:‘ 3(z=Inly,| )] (39)
weighting functionf(e,e"), it is sufficient to express the
Gaussian kernel by the Heaviside kernel. From with f(|y,|?) =1 for the denominator ant{|y,|?) =|y,|? for
the numerator of Eq(33). The term in curly brackets can
ly|? = , , now be approximated by the respective histogram and the
S et b fo de'f(e,€)O(e'~|y]), (39 integral is finally approximated by the respective sum. Tak-
ing, e.g., 100 values for a unit step ofesults in essentially

it follows by partial integration that exact correlation sums.
€ €'? lIl. SIMULATION RESULTS
f(e,e’)=—zex - (36)
2e 4e A. Dimension estimates in the presence

. . . ) of white Gaussian noise
in agreement with18]. The weight functioh f(e,e’) can be

used to transform any quantity calculated from hard kernels
into the respective ones calculated from Gaussian kernel§1aP:
Especially, it follows from

Numerical results will be given mainly for the "Hen
which is defined by

Xi+1:1_axi2+bxi,1, (40)

fmdeff(e,e')ewaeD (39  with a=1.4 andb=0.3[4]. The time lagr for embedding
0 according to Eq(2) is set to 1. For convenience, all time

. e . series considered in this paper were normalized according to
that the power law scaling—if it exists—will be the same for

both correlation sums. Xi
The relation between hard and Gaussian kernels could, in Xi— —, (42)
principle, be used to speed up the computation since the
correlation sums according to Grassberger and Procaccia afghere o, denotes the standard deviation of the time series
much simpler to calculate. However, there is a tradeoff: for(x,). For additive noise, the normalization was done with
an accurate calculation a fine resolution is required that respect to the noise-free data and for dynamical noise, with
respect to the noisy data.
In order to evaluate our method we added white Gaussian
3t should be noted that for fixed the maximum off(e,e’) noise with standard deviatiom=0.1 to the time series cor-
occurs ate’ =2e implying a mismatch of scales. Replacing the responding to a noise level of 10%.
definition of the Gaussian kernel according to From the noisy data we compute uncorrected dimension
estimates with Eq.(33) for embedding dimensionsn
exp(_ —2)_>exp<—y—2) 37 =2,...,8 andsubsequentl_y correct these estimates according
42 28 to Eq. (15). Apart from Fig. 3(where we compare N500
ends up with a proper match of scales in the senseGfge,m)  and N=20000, in all simulationsN=5000 time points are
gets the largest contribution fro@(e’,m) at the same scale. Of Used for the estimation of the invariants.
course, the specific choice is merely a convention, and in fact, the In Fig. 1 we plot the results of uncorrected and corrected
present definition is slightly more convenient for the analytical cal-estimates of the correlation dimension. Indeed, a proper scal-
culations. ing and saturation behavior is completely ruined by the
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5 5
uncorrected Roessler Roessler
uncorrected 4 corrected
3
i o]
oI AN o e — — —
0.1 1
€

Lorenz V Lorenz

uncorrected corrected
5

corrected
at h o _
3_
o
ol 0.1 1
£
1] FIG. 2. Uncorrected and corrected estimates of the correlation
dimension for embedding dimensions=2, ...,8 for the Resler

801 0'1 1 and Lorenz system in the presence of 10% Gaussian noise. The

€ “true” dimensionsD = 2.05[4] for the Lorenz and = 1.9 for the

)  Rossler systentestimated fronj13]) are indicated by dashed lines.
FIG. 1. Uncorrected and corrected estimates of the correlation

dimension for embedding dimensioms=2,...,8 for the Haon . timat h i the L ¢ tl t
map in the presence of 10% white Gaussian noise. The true dimeANENSION estimates shows scaling, the Lorenz system at leas

sion D=1.21 is indicated by a dashed line. For simulations with @PProximately saturates at the correct value¢=0.5. Re-
additive noise, the noise-free data, and with dynamical noise, th@'arkably, for the noisy Resler system the correct dimension
noisy data were always scaled to standard deviation 1. Hence, afi@Nnot even be anticipated before bias removal, but is nicely
quantity shown in this and in the following plots is dimensionless.f€écovered by our correction scheme.

For very large noise or for very few data the correction

Gaussian noise. In contrast, our corrected estimates shostill leads to qualitatively correct results. This can be seen in
scaling and saturation at the correct dimension. Fig. 3 where we show the dimension estimates for thedre

The correction breaks down if the scatebecomes too map with 50% noise, now using-A20 000 data points and
small: the noisy correlation dimensions converge to the emwith 10% noise using k500 data points. However, because
bedding dimensions and do not depend on the dimension &f the relatively large fluctuations and the small scaling re-
the noise-free signal, and hence, solving for the latter be-
comes ill defined. Note however, that for low embedding
dimensions,e may be considerably smaller than the noise
level while still allowing for a reasonable dimension esti-
mate.

The estimation becomes more and more difficult for
higher embedding dimensions since then, the necessary rela-
tive correction increases strongly. We note again that the
magnitude of the correction depends rather on the difference
of embedding dimension and correlation dimension of the
noise-free signal than on the embedding dimension itself.
Thus, if the number of data points is correspondingly larger,
one can expect to obtain similar results equally well also for
higher-dimensional dynamics.

For other tests of the dimension estimation method we use ©
the time series obtained from the $&ter and Lorenz systems
[25] of differential equations that were then superimposed by 1
white Gaussian noise with standard deviatiers 0.1. For 10% noise, N=500, uncorrected
continuous systems the delay timecan take arbitrary val- 0.01 0.1 1 0.01 0.1 1
ues. Here, we set=1 andr=0.25 for the Rasler and Lo- € €
renz systems, respectively. FIG. 3. Estimates of the correlation dimension for thenbte

The results are shown in Fig. 2. Again we find very sat-map with 50% noise level using=\20 000 data pointgupper pan-
isfactory bias removal. While none of the uncorrected di-els) and with 10% noise using N500 data pointglower panels

50% noise
N=20000
corrected

5

4

3
T
2

5
4
3
2

sy

50% noise, N=20000, uncorrected

01 0.1 1
£

10% noise
N=500
corrected

N oW A oo Lo
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0.2 0.8
corrected

_0.15 - 0.6
S 4 o
K] K
g o1 T8 0.4 .
2 2

0.05 10% noise 0.2

gaussian
0.01 0.1 1
€
0.2
7.1% noise

0.15 gaussian, colored
? K]
> >
o k) N
o 0.1 o 0.1
8 ®
2 g

0.05 10%noise { 0.05pN_ fF2>— {1 |\ _______

7 uniform 0.3
= uncorrected
0.01 0.1 1 0.2

5 10 15 20 0. 5 10 15 20
_ _ _ _ embedding dimension embedding dimension
FIG. 4. Estimates of the respective noise le\disshed lingfor

embedding dimensionsi=2, ... ,8 for the Haon map data. FIG. 5. Estimates of the correlation entroldy~ 0.325(dashed
line) for embedding dimensiona=3, ...,19 for the Heon map in

gime we regard these examples as being at the limit of '€ Presence of 10% Gaussian noise. Upper paKglas a function

reasonable application of our method. of e. Lower panelsK, as a function of gmbedeg dimension for
€=0.15,0.18,0.21 chosen from the scaling region.

B. Noise level correct value is verifiable only for large embedding dimen-

In Sec. Il C we derived an estimatoim, €) for the stan- sions (n=10) as it also would have been expected from the
dard deviation of the noise. Like the dimension &gesti-  noise-free dat§22].
mators, this construction has the advantage that in contrast to The saturation is seen more clearly in the lower panels of
fitting procedures the consistency can be checked both iRig. 5 where we show thK, estimates as a function of the
terms of scaling and saturation properties. embedding dimension for three fixed scales within the scal-

In the upper left panel of Fig. 4 we show the noise esti-ing regime. In the literature different values are givenKagr
mator for the Haon map with 10% white Gaussian noise. A of the Hsmon map. Although it is not the primary goal of this
scaling region is well established at scales in the order of thpaper to settle this issue, our findings rather suppost
noise level where the dependencefobn the noise level is =~0.325 as stated if24] thanK,~0.29 from[23].
maximal. Taking, e.g., the estimates in the middle of the
scaling range a&=0.1051 results in a mean af=0.0990 D. Other types of noise
with a standard deviation of 0.003 in excellent agreement
with the true value.

The estimate of the noise level becomes less stable f : .
smaller noise since estimates at smaller scales are based %lhmptlon will not hold exacily.

: ; - . In order to test the validity of our method also for noise
fewer data. This can be seen in the upper right panel of Fig. . L : )
4 showing the result for 2% noise. Q{Mth other probability distributions, we added uniform white

For comparison, we also plot the results for uniform and"0!S€, again with standard deviatior=0.1, to the data gen-

colored noise in the lower panels of Fig. 4. In both cases Wgrated by the Heon map and applied the same correction as

find systematic but small deviations from the true noise'" the previous section. The upper panels of Fig. 6 show the

level. Uniform noise typically results in nice scaling behav_unqorrected anq corrected d|r_nen5|on esnmgtes. Though.the
ior with a small overestimation of the noise level, while in estimates are slightly worse, if compared with the Gaussian

the case of colored noise we observe a systematic underes'f\.gise caséct. Fig. 1), both saturation and scaling are clearly

mation, which—analogous to the dimension estimates—i IS{/t\)/leez r?;t\?vr;(?(;:zggclﬂé case of nonwhite noise that, in prin
more pronounced for smadl. NP

ciple, could be overcome by choosing a large value fdee

Eq. (2)] or by filtering the data appropriately before perform-

ing the actual analysis in order to “whiten” the noise. How-
The results for th&, entropy estimates are shown in Fig. ever, a too large also complicates the dimension estimation

5. In contrast to the uncorrected estimatie$t upper pangl  since due to the intrinsic chaotic nature of the dynamics,

the corrected ones scale propeflyght upper pangl The  functional dependencies between consecutive data points are

lower boundary of the scaling range grows for increasingdiminished, and the correct filter to whiten the noise without

embedding dimensions, which is in fact a well-known prop-causing severe phase distortions of the system itself is usu-

erty also for noise-free daf&2]. A saturation behavior at the ally unknown. Still, in order to get satisfactory results within

For the derivation of the correction formulas we assumed
Oeg,dditive white Gaussian noise. In real-world data this as-

C. K, entropy
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3 3
3 31 o -
2 2 \ 2= 2
1_\} 3 _ 1 1
0 0
0 0 0.01 0.1 1 0.01 0.1 1
0.01 0.1 1 0.01 0.1 1 5 5
£ £
5 5 Roessler J Lorenz
colored noise 5{ colored noise 4 corrected 4 corrected
4 uncorrected 4 corrected .3 .3
© ©
3 3 2k 2
2 2 1 1
0 0
0.01 0.1 1 0.01 0.1 1
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>
FIG. 6. Uncorrectedleft panel$ and correctedright panel$ 2
. i . . ‘ . . o 0.1 0.1
estimates of the correlation dimension for embedding dimensions &
m=2,...,8 for the Haon map in the presence of uniformly distrib- g 0.05 0.05
uted white noiseg=0.1 (upper panejsand Gaussian distributed Roessler Lorenz
i = i i 0 0
colored_ noise,o _0.(_)71 (lower panels T_he true dimensiorD So1 o1 ] So1 0.1 ]
=1.21 is always indicated by a dashed line. e e

the proposed approach it would be advisable to avoid ex- FIG. 7. Estimates of correlation dimen§ion for thésBler sys-
treme deviations from the white-noise case since the lattelem (left panelg and for the Lorenz systeimight panel$ perturbed
may “mimic low-dimensional chaotic attractorg28]. by dynamical noise. The estimates indicate a noise level of about

In order to check the robustness of our method agains%O%- Note, however, that no clear scaling regime can be observed
non-iid noise, we added low pass filtered Gaussian noise " the noise level estimates.

the time series. The low pass filter was implemented by ap- . . .
plying a moving average of order two to white Gaussiancally: the correction Igads to small but systematic undergst]—
noise witho=0.1 mates of the dimensions. Estimates of the noise level indi-

cate that this dynamical noise roughly corresponds to 10%

ni— (7 + 74112, (42) additive noise. However, the lack of a clear scaling regime
can readily serve as an indicator that the assumption of ad-
oo/ 2~0.071 (43) ditive white noise is inconsistent.
The power spectrum of this colored noise then reB@®) IV. CONCLUSION

=[1+cos)]/2, wherew €[0,7] is the frequency and is We introduced a Gaussian kernel based method for reduc-

theTlr\llgqut ]Ictrsq:r?ancsﬁo n in the lower panels of Fig ing the noise bias in estimates of correlation dimension and
u wn i W ig. 6. :
Again, we find a major improvement after applying the cor—K2 entropy of dynamical system attractors. .

' In contrast to most proposed methods and to all existing

rection. However, ife is smaller than the noise level we o, methods. our approachlizal in scale space and re-
observe a systematic overestimate of the dimension in agreta-uireS for each, scale, only the knowledge of the function

ment with the theoretical considerations stating that the aPe difference of the uncorrected dimension estimatesifor
proximations are more accurate for larger

adjacentembedding dimensions. Hence, both scaling and

We finally present two examples using dynamical nOiS€saration can still be checked after bias removal. For prac-
that arises when the Qynamlcal system |ts§|f and not .merelﬁcal purposes this latter property is highly desirable since in
the measurement is disturbed by noise. This was realized By, anpjications it is not clear, whether the time series un-
a small c_ilstortlon of one varlal_ole of the Byer and I__orenz_ der consideration is governed by deterministic chaotic dy-
system in each step of the integration of the differentialy,mics or by an unstructured stochastic noise process.
equations’ Though the estimatelsee Fig. 7 are less stable \y"qemonstrated the performance for various examples

than for additive white Gaussian noise, we approximat(—:‘lyusing data from the Hen map and the Lorenz and &er
recover scaling and saturation at the correct values. Typ'éystem. In all cases the noise level was chosen to destroy

scaling and saturation at the true correlation dimension for
the uncorrected dimension estimate while these properties
“The Henon map is unstable with respect to this perturbation.  could be sufficiently recovered after bias removal. We could

016112-8
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show experimentally that the proposed approach is not semwith the definitions
sitive to the distribution of the noiséGaussian versus uni-
form). Experiments with dynamical noise led to qualitatively
correct results with a small but systematic underestimate of
the dimension.
Special emphasis was given to the problem of correlateénd
noise. Also for this case we could derive an approximate
refined scaling law that turns out to depend on the eigenval- E=A7. (A5)
ues of the nontrivial noise covariance matrix in an
m-dimensional embedding space. We could provide theoret-
ical and experimental evidence that our method, which doe¥sing D »=D &/det(A) we find
not require knowledge of the noise characteristics itself, is
practicable as long as the deviation from the white-noise case

ATA: =1+ €?R71 (A4)

m _ A IpA-T
is not too large. (C9(e,m))~ < > exp — X 1ZA A )X .
Estimation of the noise level and bias correctionkof detAydetR "« 4¢?
entropy was achieved similarly. Agaig, turned out to be (AB6)

the crucial quantity sufficient to define a “noise function,”
which should scale and saturate at the correct noise level
and to construct a bias-free estimatorkgf. We could dem-
onstrate a promising performance in case of thedtemap
even though the estimate &f, in the presence of noise is
generally considered to be an exceptionally difficult task

* As we see, the presence of nonwhite noise has led to
nonspherical, ellipsoidal Gaussian kernels with an
m-dimensional volumé/ given by

[18]. 1-A~tA T\ Y2
Future research will be devoted to applications of our es- V~|de T 12 (A7)
timation method to real-world data.
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APPENDIX the kth eigenvalue ofR. For largee the ellipsoid becomes
spherical; especially, its shape becomes independeat of
Ignoring € dependence of the shape of the ellipsoid we
arrive at

R*l
ex;{— U 4 77) (A1) emyb/m

g s
(Coem)) detA\/detR

In case of colored noise, the probability distribution for
7, reads(henceforth omitting the inde® on 7)

1
p(n)~ Ge(R)

with R given by Eq.(27). In order to evaluate the expectation
of the correlation sum

(A8)

SinceA is merely a function oR we may expreséC9(e, m))
by the eigenvalueSO(ﬁ), e.g.,

(CYe,m))~>, L fDn
= \Jde(R) o2 2\ 12
_ de(A)=de(\1+ 2R D)=]] ( X ) ., (A9)
><exp<— Xot 77|2— R (A2) ‘ : oi

4€° 4

. leading finally to
with D 7:=II}_,d 7, we reexpress the exponent as g y

+p2 pRI 1-A AT o
el gRTM X e (Coem)~eml] (ot eH®mem (A10)

462 4 462
[£+ATTX,)? - . SR
_5 T Tal (A3) e calculation of the correlation dimension as given by Egs.
462 (25) and(26) is now straightforward.
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